The first crystal structure of a one-dimensional chain of linked Ru^{II}=Ru^{II} units

Hitoshi Miyasaka, Rodolphe Clérac, Cristian S. Campos-Fernández and Kim R. Dunbar*

Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, USA. Fax: (979) 845-7177; E-mail: dunbar@mail.chem.tamu.edu

Received 31st August 2000, Accepted 12th January 2001 First published as an Advance Article on the web 19th February 2001

The one-dimensional polymer $[Ru_2(O_2CCF_3)_4(Phz)]_{\infty}$ 1 (Phz = phenazine) was synthesized by the reaction of $Ru_2^{II}(O_2CCF_3)_4(THF)_2$ with phenazine. An X-ray crystallographic analysis revealed that the compound consists of $Ru_2(O_2CCF_3)_4$ units bridged by phenazine ligands. The Ru–Ru bond distance is 2.3109(10) Å and the axial Ru–N distance is 2.425(2) Å. Magnetic measurements performed in the temperature range 1.8–300 K indicate that the S=1 Ru $_2^{II}$ units are weakly antiferromagnetically coupled (zJ=-3.0 cm $_2^{-1}$) with a large zero-field splitting (D=277 cm $_2^{-1}$).

Introduction

It has been demonstrated in recent years that dinuclear complexes of Mo, W, Re, Rh and Ru are useful precursors for the design of cyclic architectures 1a-e as well as one-dimensional chains 1f-1 and two-dimensional networks. 1m,n One can envisage a variety of interesting phenomena that may be exhibited by materials composed of M-M building blocks; these include unusual optical, electronic and magnetic properties. With regard to magnetic materials, the most interesting members of the metal-metal bonded family of compounds are the "paddlewheel" molecules $[Ru_2^{II,III}(O_2CR)_4]^+$ and $Ru_2^{II}(O_2CR)_4$ with ground states of S = 3/2 and 1 respectively. To date, most of the diruthenium chemistry has been carried out with the more stable mixed-valence Ru₂^{II,III} species. For example various 1-D chains such as $[Ru_2^{II,III}(O_2CR)_4(CI)]_{\infty}^{2-6}$ $[Ru_2^{II,III}(O_2-CEt)_4(Phz)]_{\infty}^+$ $(Phz = phenazine)^7$ and $[Ru_2^{II,III}(O_2C^tBu)_4(L)]_{\infty}^+$ (L = 4,4,5,5-tetramethyl-2-phenyl-4,5-dihydro-1 H-imidazol-1oxyl 3-N-oxide or 4,4,5,5-tetramethyl-2-(4-pyridyl)-4,5-dihydro-1H-imidazol-1-oxyl 3-N-oxide)⁸⁻¹⁰ have fully been characterized and their magnetic properties elucidated. In contrast to this situation, 1-D compounds of Ru^{II}₂ have not been well investigated, and no X-ray data are available to correlate with the observed physical properties. 11-15 In this paper we report the first X-ray structural determination of a polymer that contains doubly bonded Ru^{II}_{2} units. The magnetic behavior of the new compound is also described.

Experimental

Chemicals and reagents

The chemicals used were of reagent grade quality. Reactions were carried out under a dinitrogen atmosphere unless otherwise indicated. Benzene was dried by refluxing over sodiumbenzophenone, and dichloromethane was dried by refluxing over P_2O_5 . Both solvents were freshly distilled under N_2 before use. $Ru_2(O_2CCF_3)_4(THF)_2$ was synthesized by the literature method. ¹⁶

Preparation of [Ru₂(O₂CCF₃)₄(Phz)]_∞ 1

A dichloromethane solution (25 mL) of Ru₂(O₂CCF₃)₄(THF)₂ (80 mg, 0.1 mmol) was placed in a Schlenk tube, and layered with 25 mL of a benzene solution that contained an excess of

phenazine (72 mg, 0.4 mmol). The solution was allowed to stand undisturbed for 3 days at room temperature, after which time a crop of brown needle-type crystals was harvested (68 mg, yield 82%). An excess of phenazine is required, as the polymeric product does not form in high yields with a 1:1 ratio of Ru₂ to phz. IR (Nujol): 1645s, 1608w, 1526w, 1284w, 1201s, 1167s, 1120w, 910w, 861m, 826w, 775m, 736m, 655w and 598w cm⁻¹.

JULL PAPER

Physical measurements

Infrared spectra were recorded as Nujol mulls between KBr plates with a Nicolet 740 FT-IR spectrophotometer. The magnetic susceptibility measurements were made with the use of a Quantum Design SQUID magnetometer MPMS-XL (housed in the Department of Chemistry at Texas A&M University) on a finely ground, polycrystalline sample (20.22 mg) in the range 1.8–350 K at 1000 G. The data were corrected for the sample holder from experimental data and for the diamagnetic contribution of the sample using Pascal's constants.¹⁷

X-Ray crystallographic analysis

A rectangular crystal of compound 1 was cut from a larger needle crystal and secured on a glass fiber with Dow-Corning grease. Data were collected on a Bruker SMART CCD diffractometer equipped with graphite monochromated Mo-K α radiation. Of the 4653 reflections that were collected, 2852 were unique. The structure was solved by direct methods (SHELXS 97) ¹⁸ and refined by full-matrix least-squares calculations on F^2 (SHELXL 97). All atoms except for hydrogen atoms were refined anisotropically. Data collection parameters and details of the structure determination are summarized in Table 1.

CCDC reference number 186/2327.

See http://www.rsc.org/suppdata/dt/b0/b007079n/ for crystallographic files in .cif format.

Results and discussion

Structural determination of [Ru₂(O₂CCF₃)₄(Phz)]_∞ 1

Crystals of $[Ru_2(O_2CCF_3)_4(Phz)]_{\infty}$ 1 grew as brown needles during slow diffusion of solutions of $Ru_2(O_2CCF_3)_4(THF)_2$ and phenazine. The polymeric product crystallizes in the triclinic space group $P\overline{1}$, with the midpoint of the Ru–Ru vector and the center of the phenazine molecule residing on inversion centers

Table 1 Crystallographic data for [Ru₂(O₂CCF₃)₄(Phz)]₀ 1

Formula	$C_{20}H_8F_{12}N_2O_8Ru_2$
M	834.42
Crystal system	Triclinic
Space group	$P\bar{1}$
T/K	100(2)
λ/Å	0.71069
a/Å	8.574(5)
b/Å	8.863(5)
c/Å	9.006(5)
a/°	112.649(5)
βľ°	93.209(5)
γ/°	90.088(5)
$V/Å^3$	630.4(6)
Z	1
$\mu(\text{Mo-K}\alpha)/\text{cm}^{-1}$	1.338
$\stackrel{\sim}{R}$	$0.0240 (I > 2.00\sigma(I))$
	0.0260 (all data)
Rw	$0.0623 (I > 2.00\sigma(I))$
	0.0633 (all data)

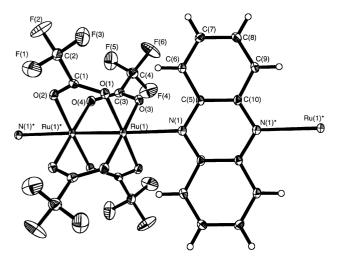


Fig. 1 Thermal ellipsoid drawing at the 50% probability level of the unique portion of $[Ru_2(O_2CCF_3)_4(Phz)]_{\omega}$ 1 with atom labeling scheme.

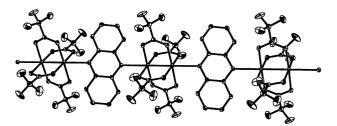
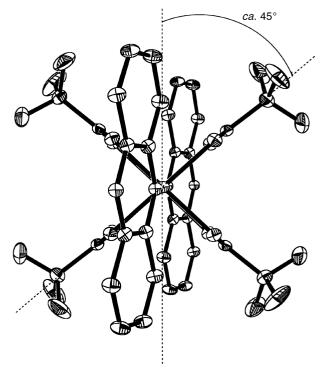
(Z=1). An ORTEP²⁰ drawing of the formula unit with the atom numbering scheme is depicted in Fig. 1.

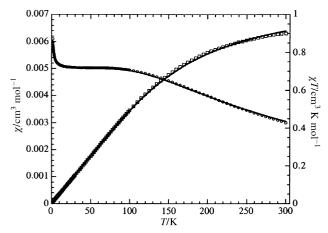
Selected bond distances and angles are given in Table 2. The phenazine molecules bridge the $Ru^{II}_{2}(O_{2}CCF_{3})_{4}$ units to form an infinite one-dimensional chain along the [0, 1, 1] direction as shown in Fig. 2. The Ru(1)–N(1) axial interaction is 2.425(2) Å which is very close to the values of 2.436(4) and 2.443(5) Å reported for the mixed-valence analog $[Ru_{2}^{II,III}(O_{2}CEt)_{4}(Phz)][BF_{4}]$. The phenazine bridges in 1 are canted away from a strictly linear interaction $(Ru(1)-N(1)\cdots N(1)^*$ 164.6°), a situation that was also noted in $[Ru_{2}^{II,III}(O_{2}CEt)_{4}(Phz)][BF_{4}]$ by Cotton *et al.* who attributed this feature to the cumulative effects of intermolecular packing forces. A view along the N–Ru–Ru–N axis (Fig. 3) reveals that the phenazine bridges in 1 do not bisect the paddle-wheel arrangement of $O_{2}CCF_{3}^{-1}$ ligands at the ideal angle of 45°.

The Ru–Ru bond distance in compound 1 is 2.3109(10) Å, the longest distance reported to date for compounds of the type Ru $^{\rm II}_2({\rm O_2CCF_3})_4({\rm L})_2$. One exception to this is Ru $_2({\rm O_2CCF_3})_4({\rm NO})_2$ with a Ru–Ru separation of 2.532(4) Å, but the Ru $_2$ core is formally reduced by NO to give a singly bonded compound with a ground state electronic configuration of $\sigma^2\pi^2\delta^2\delta^{*2}\pi^{*4}$. The corresponding metal–metal bond distances in Ru $_2({\rm O_2-CCF_3})_4({\rm THF})_2^{-16}$ and [Ru $_2({\rm O_2-CCF_3})_4({\rm Tempo})_2$] (Tempo = 2,2,-6,6-tetramethylpiperidine-*N*-oxyl) are 2.276(3) and 2.300(2) Å, respectively. The 2-D network compound [{Ru}_2^{\rm II}_2-({\rm O_2CCF_3})_4\}_2(\mu_4-{\rm TCNQ})]_{\infty} (TCNQ = 7,7,8,8-tetracyanoquinodimethane) recently prepared in our laboratories exhibits a Ru–Ru bond distance of 2.2875(7) Å.

Table 2 Pertinent bond distances (Å) and angles (°) for [Ru₂(O₂-CCF₃)₄(Phz)]_∞ **1** with estimated standard deviations in parentheses

Ru(1)–O(1)	2.0671(19)	Ru(1)-O(4)*	2.0679(18)
Ru(1)-O(2)*	2.0677(19)	Ru(1)-N(1)	2.425(2)
Ru(1)-O(3)	2.0643(18)	Ru(1)-Ru(1)*	2.3109(10)
O(1) P (1) O(2)*	150 15(6)	O(2)* D (1) D (1)*	00.15(5)
O(1)-Ru(1)-O(2)*	178.15(6)	O(2)*-Ru(1)-Ru(1)*	89.15(5)
O(1)-Ru(1)-O(3)	94.55(7)	O(3)-Ru(1)-O(4)*	178.15(6)
O(1)-Ru(1)-O(4)*	85.71(7)	O(3)-Ru(1)-N(1)	86.12(8)
O(1)-Ru(1)-N(1)	93.88(7)	O(3)-Ru(1)-Ru(1)*	88.71(6)
O(1)-Ru(1)-Ru(1)*	89.14(5)	O(4)*-Ru(1)-N(1)	95.68(8)
O(2)*-Ru(1)*-O(3)	86.11(7)	O(4)*-Ru(1)-Ru(1)*	89.47(6)
O(2)*-Ru(1)-O(4)*	93.57(7)	Ru(1)*-Ru(1)-N(1)	174.21(4)
O(2)*-Ru(1)-N(1)	87.88(7)		
Symmetry operation	x : * -x, -y, -z.		


Fig. 2 View of a chain of $[Ru_2(O_2CCF_3)_4(Phz)]_{\infty} 1$.

 $\label{eq:Fig.3} \textbf{ View of compound 1 looking down the N-$Ru-$Ru-N vector.}$

Magnetic properties

The temperature dependence of the magnetic susceptibility of compound 1 measured between 1.8 and 300 K is shown in Fig. 4. The overall behavior is very similar to that of the parent $\mathrm{Ru^{II}}_{2}(\mathrm{O_{2}CR})_{4}$ compounds whose magnetic properties have been reported. The nature of the ground state of such compounds has been a matter of debate over the years. The first theoretical calculation on this series was performed by Norman et al. The SCF-Xa-SW level on $\mathrm{Ru_{2}(O_{2}CH)_{4}}$. The results predicted the presence of a Ru–Ru double bond with a $(\pi^{*})^{3}(\delta^{*})^{1}$ ground-state configuration and a $(\pi^{*})^{2}(\delta^{*})^{2}$ excited-state configuration. Later, ab initio Hartree–Fock (RHF) calculations that the ground-state

Fig. 4 Temperature dependence of χ (circle) and χT (square) of $[\text{Ru}_2(\text{O}_2\text{CCF}_3)_4(\text{Phz})]_{\infty}$ **1**. The solid line represents the theoretical fit with g = 2.0, $D = 277 \text{ cm}^{-1}$, $zJ = -3.0 \text{ cm}^{-1}$, $\text{TIP} = 9.9 \times 10^{-5} \text{ cm}^3 \text{ mol}^{-1}$, and $\rho = 0.1\%$.

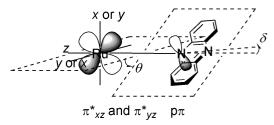
configuration is most likely $(\pi^*)^2(\delta^*)^2$, in accord with reports of the magnetic properties of $\mathrm{Ru}_2(\mathrm{hp})_4$ (Hhp = 2-hydroxypyridine) compounds. A-Ray photoelectron spectroscopic studies performed by Green *et al.* on $\mathrm{Ru^{II}}_2(\mathrm{O_2CCF_3})_4$ apparently do not allow for a definitive assignment of the ground state. With the data currently in hand, however, it is reasonable to state that $\mathrm{Ru^{II}}_2$ complexes are doubly bonded species with the π^* and δ^* HOMO orbitals being nearly degenerate. The ground state electronic configuration is $(\pi^*)^2(\delta^*)^2$ which is an S=1 state with an appreciable zero-field splitting (ZFS).

Compound 1 exhibits a continuous decrease of χT at lower temperatures from 0.900 cm³ K mol⁻¹ at 300 K to 0.011 cm³ K mol⁻¹ at 1.8 K, which is primarily due to the zero-field splitting arising from the $^3A_{2g}$ ground state. The magnetic susceptibility for S=1 centers with ZFS and a temperature independent paramagnetic (TIP) contribution can be expressed as in eqn. (1)²¹

$$\chi = (2Ng^2\beta^2/3k_BT)[\{e^{-x} + (2/x)(1 - e^{-x})\}/$$

$$(1 + 2e^{-x})] + TIP \quad (1)$$

where $x = D/k_BT$ and D is the magnitude of ZFS. Superexchange in these chains can be considered by the molecular field approximation (2)²⁸ where z is the number of neighbors


$$\chi' = \chi / \{1 - (2zJ/Ng^2\beta^2)\chi\}$$
 (2)

and J the magnitude of the intermolecular interaction, which is assumed to be intrachain magnetic interactions of the S=1 centers. The abrupt increase of χ at low temperature that can be observed in Fig. 4 is attributed to an extrinsic paramagnetic impurity (ρ) of a ubiquitous $\operatorname{Ru_2^{II,III}}$ species (S=3/2). This is taken into account by eqn. (3). The value of g_{imp} is assumed to

$$\chi'' = (1 - \rho)\chi' + \rho(5Ng_{\rm imp}^2\beta^2/4k_{\rm B}T)$$
 (3)

be 2.0 by convention. In order to minimize the usual problems of refining many parameters $(g, D, zJ, \text{TIP}, \rho)$, the least-squares calculation was performed in a parameter range of g=2.0 and $D=250-300\,\text{ cm}^{-1}$ based on previously reported magnetic data. The best fitting parameters for the magnetic behavior of 1 were determined from eqn. (3). The best χT fitting to the molecular field approximation led to $g=2.0, D=277\,\text{cm}^{-1}, zJ=-3.0\,\text{cm}^{-1}, \text{TIP}=9.9\times10^{-5}\,\text{cm}^3\,\text{mol}^{-1},$ and $\rho=0.001$. Expected magnitudes for the temperature independence paramagnetism (TIP) of a $^3A_{2g}$ ground state are in the range $(10-30)\times10^{-5}\,\text{cm}^3\,\text{mol}^{-1}$.

Although any fitting of the aforementioned kind must be interpreted with caution, one point emerges very clearly. Superexchange interactions between the Ru^{II}₂ units through the

Fig. 5 Schematic representation of orbital arrangements between a π^* orbital (π^*_{xz} or π^*_{yz}) on $Ru_2(O_2CCF_3)_4$ and the $p\pi$ orbital of phenazine. The angle θ is ca. 45° and δ is 15.4° in $[Ru_2(O_2CCF_3)_4(Phz)]_{\infty}$ 1.

phenazine bridges is very weak, of the order of $zJ=-3.0~{\rm cm^{-1}}$. This conclusion is in accord with the magnetic interactions reported for the 1-D chain $\{[{\rm Ru_2}^{\rm II,III}({\rm O_2CCH_3})_4({\rm Pyz})]^+\}_{\infty}$ with pyrazine bridges in which $zJ=-2.3~{\rm cm^{-1}}$. As mentioned earlier, the phenazine linkers are not lined up perfectly with the Ru–Ru unit (the bending angle $\delta=15.4^\circ$ as depicted in Fig. 5), furthermore they do not bisect the paddle-wheel arrangement of ${\rm O_2CCF_3}^-$ groups at a 45° angle (rotation angle θ in Fig. 5). This canting reduces the p π overlap of the axial nitrogen atoms with the two π^* orbitals in which the unpaired spins of ${\rm Ru_2(O_2CCF_3)_4}$ reside. The σ pathway for communication would be the main exchange mechanism available in this case, and this is known to be weak for pyrazine, phenazine and related ligands.⁷

In summary, a new one-dimensional compound consisting of $\mathrm{Ru^{II}_{2}(O_{2}CCF_{3})_{4}}$ molecules linked by axially coordinated phenazine ligands was prepared and fully characterized. [Ru₂(O₂-CCF₃)₄(Phz)]_∞ 1 is the first example of a structurally characterized polymeric $\mathrm{Ru^{II}_{2}(O_{2}CR)_{4}}$ compound. The magnetic data reveal weak antiferromagnetic interactions between the paramagnetic $\mathrm{Ru^{II}_{2}}$ S=1 centers via the phenazine bridges which is not entirely unexpected, given the orientation of the axial phenazine unit.

Acknowledgements

K. R. D. thanks the National Science Foundation for support (NSF CHE-9906583) and for funding the CCD diffractometer (CHE-9807975) and the SQUID magnetometer (NSF-9974899). H. M. was supported, in part, by a JSPS Research Fellowship for Young Scientists.

References

- 1 See for example: (a) F. A. Cotton, L. M. Daniels, C. Li and C. A. Murillo, J. Am. Chem. Soc., 1999, 121, 4538; (b) R. P. Bonar-Law, T. D. McGrath, N. Singh, J. F. Bickley and A. Steiner, Chem. Commun., 1999, 2457; (c) F. A. Cotton, L. M. Daniels, G. T. Jordan IV, C. Lin and C. A. Murillo, *Inorg. Chem. Commun.*, 1998, 1, 109; (d) F. A. Cotton, L. M. Daniels, G. T. Jordan IV, C. Lin and C. A. Murillo, J. Am. Chem. Soc., 1998, 120, 3398; (e) F. A. Cotton, L. M. Daniels, I. Guimet, R. W. Henning, G. T. Jordan IV, C. Lin, C. A. Murillo and A. J. Schultz, J. Am. Chem. Soc., 1998, 120, 12531; (f) R. H. Cayton, M. H. Chisholm, J. C. Huffman and E. B. Lobkovsky, J. Am. Chem. Soc., 1991, 113, 8709; (g) F. A. Cotton, C. Li and C. A. Murillo, J. Chem. Soc., Dalton Trans., 1998, 3151; (h) M. H. Chisholm, Acc. Chem. Res., 2000, 33, 53; (i) F. A. Cotton, Y. Kim and J. Lu, *Inorg. Chim. Acta*, 1994, **221**, 1; (j) C. Campana, K. R. Dunbar and X. Ouyang, *Chem. Commun.*, 1996, 2427; (k) X. Ouyang, C. Campana and K. R. Dunbar, Inorg. Chem., 1996, 35, 7188; (1) H. Miyasaka, C. Campos, J.-R. G. Mascarós and K. R. Dunbar, Inorg. Chem., 2000, 39, 5870; (m) F. A. Cotton and Y. Kim, J. Am. Chem. Soc., 1993, 115, 8511; (n) J. Lu, W. T. A. Harrison and A. J. Jacobson, Chem. Commun., 1996, 399.
- 2 F. D. Cukiernik, D. Luneau, J.-C. Marchon and P. Maldivi, *Inorg. Chem.*, 1998, 37, 3698.
- 3 J. Telser and R. S. Drago, Inorg. Chem., 1984, 23, 3114.
- 4 F. A. Cotton, Y. Kim and T. Ren, *Polyhedron*, 1993, 12, 607.
- 5 F. A. Cotton and E. Pedersen, *Inorg. Chem.*, 1975, **14**, 388.
- 6 M. C. Barral, R. Jiménez-Aparicio, D. Pérez-Quintanilla, J. L. Priego, E. C. Royer, M. R. Torres and F. A. Urbanos, *Inorg. Chem.*, 2000, 39, 65.

- 7 F. A. Cotton, Y. Kim and T. Ren, Inorg. Chem., 1992, 3, 2723.
- 8 M. Handa, Y. Sayama, M. Mikuriya, R. Nukada, I. Hiromitsu and K. Kasuga, Chem. Lett., 1996, 201.
- 9 M. Handa, Y. Sayama, M. Mikuriya, R. Nukada, I. Hiromitsu and K. Kasuga, Bull. Chem. Soc. Jpn., 1998, 71, 119.
- 10 Y. Sayama, M. Handa, M. Mikuriya, R. Nukada, I. Hiromitsu and K. Kasuga, Chem. Lett., 1998, 777.
- 11 S. C. Huckett, C. A. Arrington, C. J. Burns, D. L. Clark and
- B. I. Swanson, Synth. Met., 1991, 41, 2769.
 D. Li, S. C. Huckett, T. Frankcom, M. T. Paffett, J. D. Farr, M. E. Hawley, S. Gottesfeld, J. D. Thompson, C. J. Burns and B. I. Swanson, ACS Symp. Ser., 1992, 499, 33.
- 13 L. Bonnet, F. D. Cukiernik, P. Maldivi, A.-M. Giroud-Godquin and J.-C. Marchon, Chem. Mater., 1994, 6, 31.
- 14 J. L. Wesemann and M. H. Chisholm, Inorg. Chem., 1997, 36, 3258.
- 15 P. Maldivi, A.-M. Giroud-Godquin, J.-C. Marchon, D. Guillon and A. Skoulios, Chem. Phys. Lett., 1989, 157, 552.
- 16 A. J. Lindsay and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1987,
- 17 Theory and Applications of Molecular Paramagnetism, eds. E. A. Boudreaux and L. N. Mulay, John Wiley & Sons, New York, 1976.

- 18 G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Determination, University of Göttingen, 1997.
- 19 G. M. Sheldrick, SHELXL 97, Program for Refinement of Crystal Structure, University of Göttingen, 1997.
- 20 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 21 A. Cogne, E. Belorizky, J. Laugier and P. Rey, Inorg. Chem., 1994, **33**, 3364.
- 22 H. Miyasaka, C. Campos, R. Clérac and K. R. Dunbar, Angew. Chem., Int. Ed., 2000, 39, 3831.
- 23 F. A. Cotton, V. M. Miskowski and B. Zhong, J. Am. Chem. Soc.,
- 1989, **111**, 6177. 24 J. G. Norman, G. E. Renzoni and D. A. Case, J. Am. Chem. Soc., 1979, 101, 5256.
- 25 D. L. Clark, J. C. Green, C. M. Redfern, G. E. Quelch, I. H. Hiller
- and M. F. Guest, *Chem. Phys. Lett.*, 1989, **154**, 326. 26 F. A. Cotton, T. Ren and J. L. Eglin, *Inorg. Chem.*, 1991, **30**,
- 27 D. L. Clark, J. C. Green and C. M. Redfern, J. Chem. Soc., Dalton Trans., 1989, 1037.
- 28 C. J. O'Connor, Prog. Inorg. Chem., 1982, 29, 203.